TRAFFIC Human exposure to air pollution during daily journeys in London

Christina Mitsakou

Sean Beevers, H. Ross Anderson, Frank Kelly

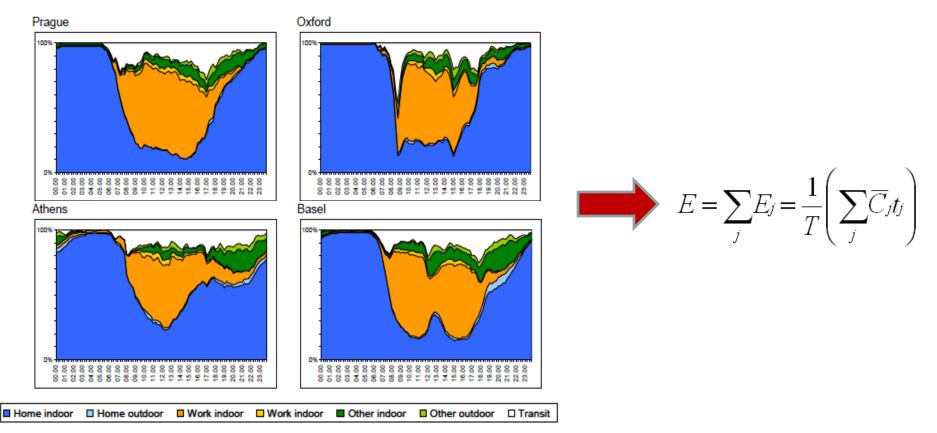
MRC-HPA Centre for Environment and Health, Environmental Research Group, King's College London

Human exposure to air pollution

In order to detect and quantify the health effects of air pollution, both:

- the **magnitude of concentration** and
- the length of exposure

are necessary.


MRC-HPA Centre for Environment and Health Imperial College

London

Daily exposure - microenvironments

People spend time in different microenvironments depending on the day hour

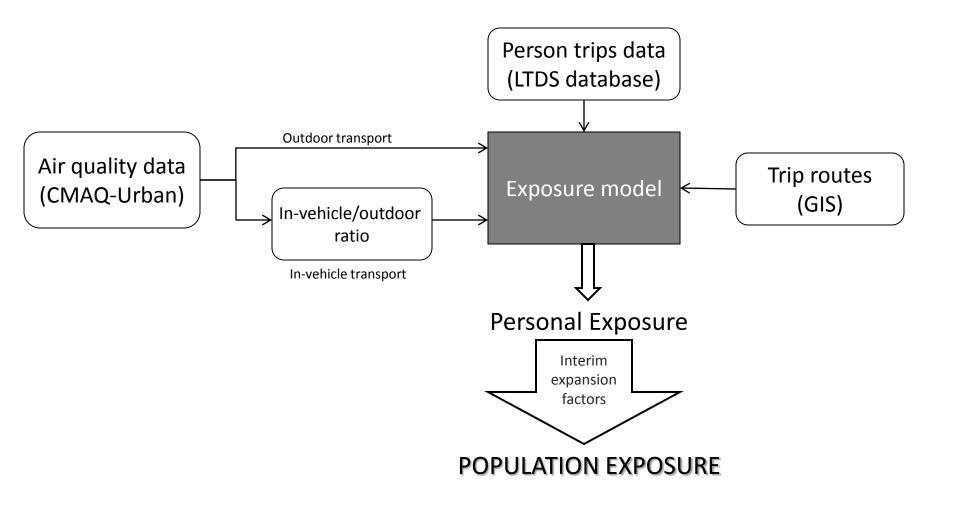
Air Pollution Exposure in European Cities: the EXPOLIS study (1994-1998)

Air pollution exposure models

- Land use regression: the pollution concentration at a given site is estimated based on surrounding land use and traffic characteristics, limited accuracy for areas with variant tropography
- Line dispersion: solve Gaussian plume equations, need for extensive cross validation with monitoring data and estimate errors have been reported
- Integrated emission meteorological: simulate complex pollutants' pathways allowing the potential of precise health effect estimates
- □ Hybrid: personal exposure calculations plus one of the above

"Hybrid" models may well overcome the problem of achieving population representative samples while understanding the role of exposure variation at the individual level (Jerrett et al., *J Expo Anal Env Epid*, 2005).

"Traffic Pollution and Health in London" funded by NERC/MRC


Description of hybrid exposure model for London

MRC-HPA Centre for Environment and Health

Imperial College

Model flowchart

Person Trips data

London Travel Demand Survey (LTDS) conducted by TfL for 2005-2010 (37310 Households, 87912 Persons, 208205 Trips, 339689 *Trip* Stages)

Transport modes

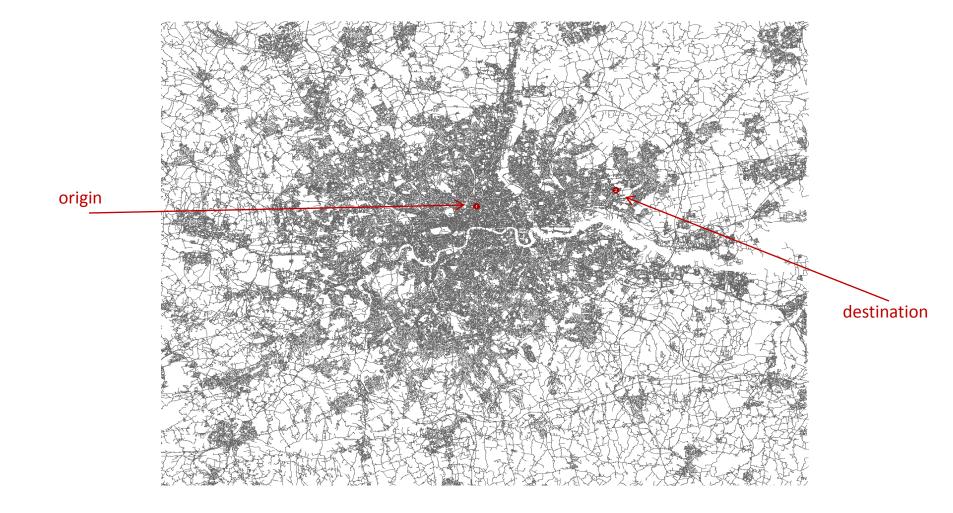
walk/cycle (168618 routes) car/motorcycle/van/coach/taxi (98577 routes) bus (38409 routes) train – National rail & London overground (11213 routes) underground (22442 routes) boat/other (430 routes)

Significant parameters for the trip simulation

- Person no of trips made
- <u>Trip</u> no of stages per trip, trip start/end time
- <u>Stage</u> origin easting/northing, destination easting/northing, mode of transport, duration of trip stage, distance of trip stage

Trip routes

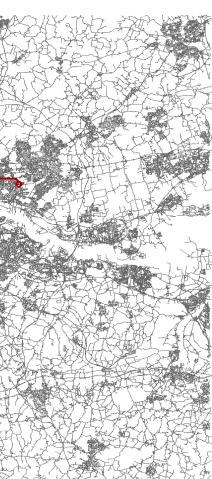
Transportation network: ITN road network (rail, tube and bus networks to be included)


ArcGIS 10.1 or pgRouting

MRC-HPA Centre for Environment and Health

Imperial College London

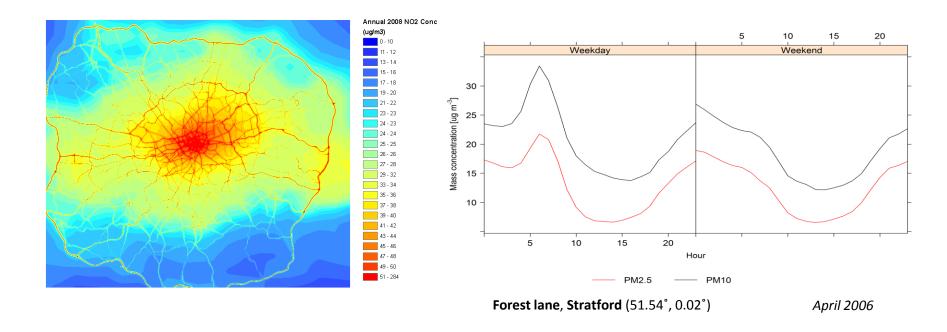
Trip routes



MRC-HPA Centre for Environment and Health

Trip routes

	y (deg)	x (deg)	ul_Length(m)	Attr_Length(m) Cum	RoadLabel	ObjectID
(A)	51.53693	-0.10197	23.104633	23.104633		1
Rock	51.53704	-0.10206	36.183671	13.079037		2
A Port	51.53704	-0.10171	97.216449	61.032778	THEBERTON STREET	3
Further C	51.53714	-0.1012	121.914627	24.698178	UPPER STREET	4
REPO	51.53713	-0.10068	190.266657	68.352029	GASKIN STREET	5
THAT	51.53686	-0.09968	274.337624	84.070967	GASKIN STREET	6
JE LE	51.53679	-0.09899	315.142036	40.804411	ESSEX ROAD	7
KIR	51.53705	-0.09867	347.299976	32.15794	ESSEX ROAD	8
20.5	51.5374	-0.09825	411.999008	64.699031	ESSEX ROAD	9
	51.53775	-0.09782	445.599603	33.600595	ESSEX ROAD	10
	51.53798	-0.09755	475.832036	30.232432	ESSEX ROAD	11
	51.53813	-0.09738	485.832036	10	ESSEX ROAD	12
	51.53822	-0.09726	501.643424	15.811388	ESSEX ROAD	13
	51.53838	-0.09706	530.852797	29.209372	ESSEX ROAD	14
	51.53884	-0.0964	637.086783	106.233985	ESSEX ROAD	15
	51.53945	-0.09537	730.438153	93.35137	ESSEX ROAD	16
	51.53979	-0.0948	746.396139	15.957985	ESSEX ROAD	17
SA ST	51.54002	-0.09451	793.520984	47.124844	ESSEX ROAD	18
	51.54023	-0.094	840.143386	46.622402	ESSEX ROAD	19
A D	51.54046	-0.09369	858.062202	17.918815	ESSEX ROAD	20
	51.54073	-0.09315	935.703353	77.64115	ESSEX ROAD	21
SSEF	51.54104	-0.09245	977.690919	41.987566	ESSEX ROAD	22
HAN.	51.54135	-0.09176	1054.095759	76.404839	ESSEX ROAD	23
ALL A	51.54163	-0.09116	1082.545225	28.449465	ESSEX ROAD	24
H.A.M.	51.54199	-0.09049	1178.102877	95.557652	ESSEX ROAD	25
夏安公	51.54236	-0.08993	1193.831832	15.728954	ESSEX ROAD	26
THE	51.54249	-0.08974	1216.39286	22.561028	ESSEX ROAD	27
*>> ∠à	51.54282	-0.08927	1292.320464	75.927603	ESSEX ROAD	28
1						


MRC-HPA Centre for Environment and Health

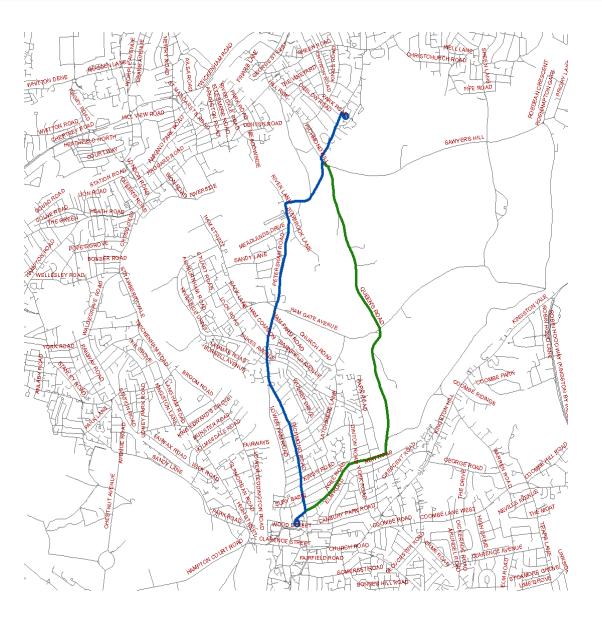
Imperial College London

Air quality data

Outdoor transport: CMAQ-urban (horizontal resolution: 20m x 20m)

In-vehicle transport: The correlation between in-vehicle and outdoor concentration depends on the air exchange rates and deposition rate of the pollutant (Liu & Frey, 2011).

MRC-HPA Centre for Environment and Health
Imperial College
London
Kesterich


Impacts of trip parameters on personal exposure

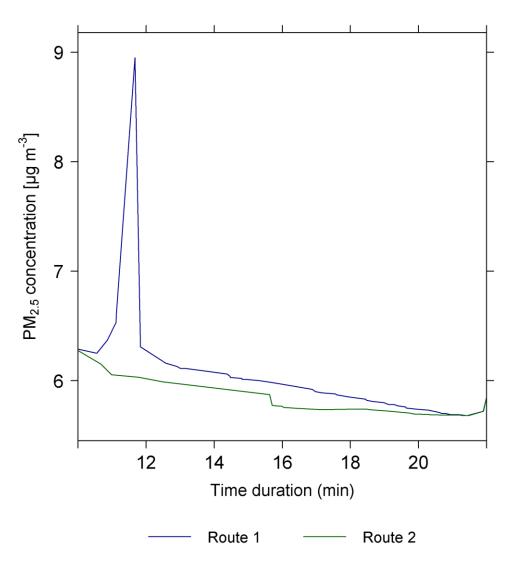
MRC-HPA Centre for Environment and Health

Imperial College

Traversing routes

Transport mode: Cycle

Origin and destination:


- (1) Park road northwest of **Richmond Park**
- (2) Kingston train station

Trip time: 7:10 - 7:32

Vehicle speed: 9mph

Traversing routes

Total inhaled mass (µg)

Route 1: 6.9

Route 2: 6.4

7.5% less exposure along Route 2

Inhaled mass =

ventilation rate (breathing frequency x tidal volume per breath) x pollutant concentration x exposure time

ventilation rate (cycling)^{*} = $3 m^3 h^{-1}$


London

*ICRP (1994)

Travelling hours

Transport mode: Motorcycle

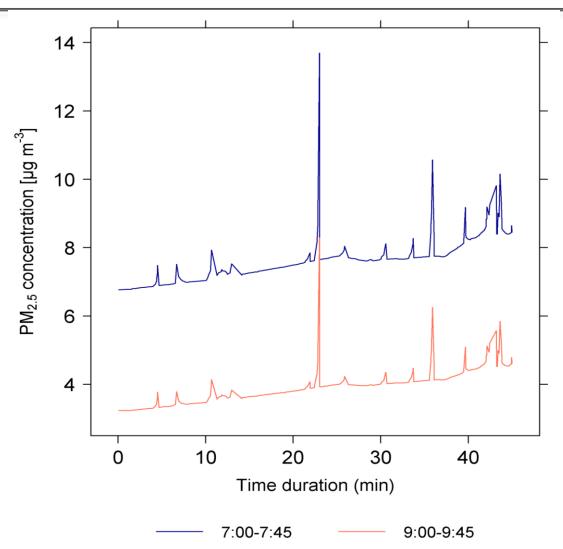
Origin and destination:

- (1) Rainham road North, Dagenham
- (2) Essex Road, Islington

Trip time: 7:00 – 7:45

Vehicle speed: 20mph

NDON

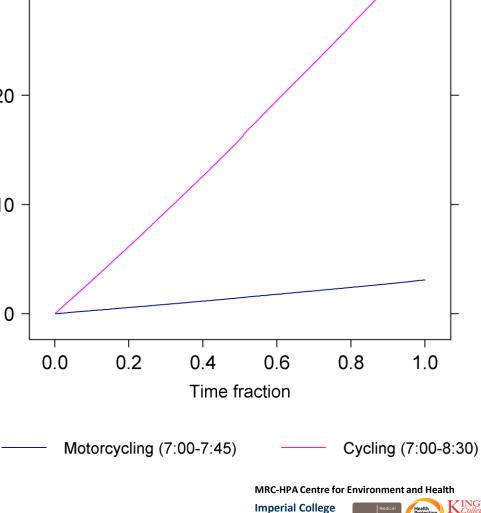

Travelling hours

Transport mode: Motorcycle

Trip time: 7:00 – 7:45 (blue) 9:00 – 9:45 (coral)

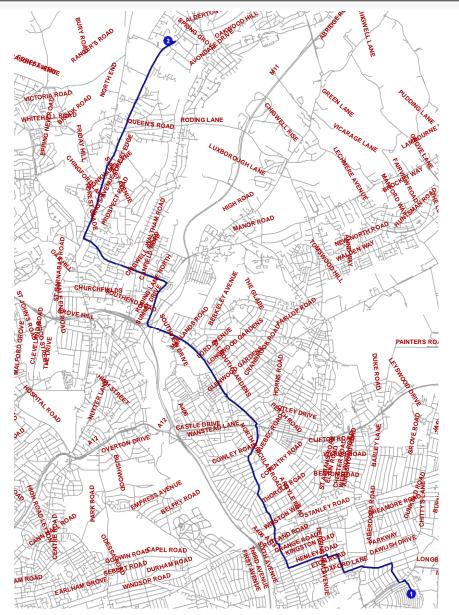
Vehicle speed: 20mph

- Decrease in exposure by up to 50% for travelling in nonrush hours
- Total inhaled mass for trip time 9:00 – 9:45 is half the calculated mass for trip 7:00 – 7:45 (1.59 vs. 3.09 µg)


ventilation rate (motorcycling)^{*} = 0.5 m³ h⁻¹ *ICRP (1994)

Transport modes

Personal activity level


Transpo	ort mode		
Motorcycle	Cycle	30 -	
Trip time		Cumulative PM _{2.5} inhaled mass [µg]	
7:00 - 7:45	7:00 - 8:30	d ma	
Vehicle speed		- 02 Julie	
20mph	9mph	A _{2.5} ir	
Ventilation rate		le PN	
0.5 m ³ h ⁻¹	3 m ³ h ⁻¹	- 01 nlativ	
		Cum	

The inhaled dose received by the cyclist during the entire trip is 10 times higher than the respective dose during motorcycling

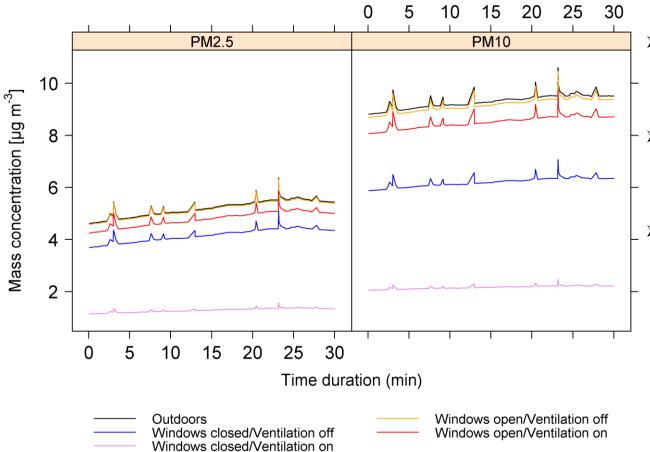
London

In-vehicle transport

Transport mode: Car

Origin and destination:

- (1) Southwold Dr, Barking
- (2) High Road, Loughton


Trip time: 8:10 – 8:40

Vehicle speed: 20mph

MRC-HPA Centre for Environment and Health

In-vehicle transport

- In-car exposure is similar to the outdoor exposure when the windows are fully open
- Decrease in the in-car exposure by 10% when the air conditioning system is on
- Significant reduction (up to 78%) in the in-car exposure when the windows are closed and the air conditioning system is on

Main factors affecting air pollution exposure whilst travelling in London are detected

- > the selection of green traversing routes leads to reduced exposure levels
- > the exposure depends on travelling hours and with the aid of the model the advantage of travelling in non rush-hour periods can be determined
- the respiratory dose is influenced by the transport mode and level of physical activity – increased inhaled dose during cycling comparing to less active transport modes
- > the in-vehicle transport may aid to significantly reduced particle exposure under specific operational conditions (windows, air conditioning system)

Points for discussion

- How do the factors affecting personal exposure whilst travelling in London impact on population exposure?
- How much do the in-the-city journeys contribute to people daily exposure? How are these daily exposure calculations compared to traditional exposure estimates? Exposure misclassification
- What are the health effects from exposure to traffic-related air pollution for various groups of people (separated by age, gender, socio-economic status)? Epidemiological studies
- Based on the answers to the above points, how traffic and transport policies could be improved?

Thank you!

Acknowledgments to MRC centre colleagues, James Smith and NERC/MRC for funding "Traffic Pollution and Health in London"