

New measurements of PM composition during pollution episodes

David Green, King's College London

Contents

- Background
 - What are pollution episodes and why are they important?
- Current measurement methods
- New measurement methods
- How we can use these new measurements
 - Look at some preliminary results

What is an episode?

- Air pollution is episodic
- Most of the time air pollution is low
- Occasionally, emissions and meteorology conspire to increase concentrations
- Can occur at one or more site type depending on what is causing the episode

Why are episodes important?

Health

- During episodes health effects at the population level become increasingly numerous and severe
- Multi-city studies conducted in Europe (29 cities) reported short-term mortality effects for PM₁₀ of 0.62% per 10 μg m⁻³ (24-hour mean) (Katsouyanni et al., 2001)

Regulation

 EU Air Quality Directive limit value for protection of human health. 50 μg m⁻³, not to be exceeded more than 35 times a calendar year

Understanding atmospheric processes

 Increased concentration 'amplifies' the concentrations above other interfering processes and emissions

Different types of episode

- How do we identify different types of episode
 - They occur at different times of the year
 - Different in magnitude and frequency at different sites?

Average number of episodes per month 2004-2011

Different types of episode

Local pollution

- Urban sources (vehicles, biomass, cooking, etc)
- Poor dispersion
- Temperature inversions
- More prevalent close to source
- Chemical composition elemental and organic carbon, wind blown dust

Long range transport

- Secondary aerosols, fires, Saharan dust
- Regionally uniform in concentration
- Additive effect close to other sources
- Chemical composition
 - Secondary aerosols (NH₄NO₃, (NH₄)₂SO₄, organic carbon)
 - Fires (elemental and organic carbon)
 - Saharan dust (SiO₂)

How have we understood episodes up to

now?

90

80

70

60

50

40 30

Daily me

10 µgm³ (TEOM*1.3)

Lenschow approach

- Lenschow et al. 2001 (AE)
- NO_x tracer
 - Fuller et al. 2002, 2004, 2006 (AE)
- Chemical composition
 - TfL & LB Camden

Short term academic studies

• REPARTEE, DAPPLE

Limitations in previous studies

Increments

- Relies on accurate representation of rural concentration
- If the source is on the same vector then it is impossible to distinguish
- Confounding from local emissions

NO_x tracer

 Differentiates between urban or regional sources but not between different urban or regional sources

Chemical composition

- Poor time resolution for sampler systems
- Expensive and labour intensive
- Analysis of sources of organic carbon are limited

Short term academic studies

- Lack applicability to annual mean
- Hostage to weather
- Expensive and labour intensive
- Atmospheric process rather than policy driven

What's new?

- More advanced instrumentation
- More advanced data analysis methods
- Defra black smoke network
 - Replaced old black smoke bubblers with aethalometers
- Defra PM Network
 - Replaced sampler-based measurements of anions (NO₃⁻, SO₄²⁻, Cl⁻) with real time ion monitor
- NERC ClearfLo
 - Aerosol Mass Spectrometers (University of Manchester, CEH)
 - 12 month deployment at Marylebone Road
 - Short term deployment at North Kensington extended to 12 month with Defra support
- Examine the episodes at the start of 2012 using these provisional results...

Aethalometer

- Measures attenuation of light at with UV 370nm and IR 880nm wavelengths
- 5 min mean concentrations
- IR adsorption analogous to elemental carbon
- Provides continuity from black smoke measurements for epidemiology studies
- Because wood smoke has a strong absorption in UV it can be used to detect PM from wood smoke (Fuller et al. (in review), Favez et al., 2009, 2010, etc...)

URG Ambient Ion Monitor

- Samples PM₁₀
- Removes interfering gases
- Extracts into aqueous solution
- Analysed using 2 ion chromatographs
- Chloride, sulphate, nitrate, sodium, ammonium, potassium, magnesium, calcium
- 1 hour mean concentrations
- Wider range of anions and cations helps to differentiate between marine and secondary aerosol
- Size fraction directly relevant to regulation

Aerosol Mass Spectrometer

- Samples PM1
- Particles counted and sized using time of flight
- Thermal particle vaporization
- Mass / charge ratio measured using mass spectrometer
- Detection and quantification of nonrefractory species such as such as sulphate, nitrate, ammonium and chloride as well as organic aerosol species
- Organics can then be grouped using positive matrix factorisation (PMF) to yield source categories
 - Biomass
 - Cooking
 - Vehicles
 - Oxidised Organic Aerosol (secondary)

North Kensington Jan – Apr 2012

Hourly mass closure (PM_{2.5})

Species	Data source	Factor
Chlorides	URG	1.65
Nitrates	AMS	1.32
Sulphates	AMS	1.38
Elemental Carbon	Aethalometer	-
Organic Carbon	AMS PMF	-
Water	Frank et al. 2006	0.24*(SO ₄ +NH ₄)
Metals	None	

Episode 1 – 14th & 16th January

- Low temperature
- Poor dispersion

Episode 1 – 14th-18th January

Episode 1 – 14th-18th January

Episode 1 – Organic aerosol

Episode 2 – 10th -14th February

Long Range transport

NOAA HYSPLIT MODEL Backward trajectories ending at 0800 UTC 13 Feb 12 GDAS Meteorological Data -50

ш

00.0

51.50 N

at

★

Source

Episode 2 – 10th-14th February

Episode 2 – 10th-14th February

Episode 3 – 23rd March

- Long range transport
- Higher % of sulphate
 - More photochemistry
- Prolonged episode

Episode 3 – 21st – 26th March

Episode 3 – 21st – 26th March

North Kensington Jan – Apr 2012

Model validation

- As the complexity of modelling techniques increases, so does our need for more complex measurements for model validation
- Eulerian models such as CMAQ output 30+ co-varying species at a high time resolution
- Errors in any one of these outputs could driving errors in the total PM model output
- More detailed real time measurement techniques are vital for validating complex modelling outputs
- Development / improvement of emissions inventories, - refinement through remodelling?
- An in depth knowledge of both the measurement techniques and modelling methodology is required

PM species in CMAQ4.7.1
Nitrate
Sulphate
Ammonium
Sodium
Chloride
Elemental carbon
Primary anthropogenic organic aerosol
3 products of SOA from low-yield arom (Xylene)
3 products of SOA from high-yield arom (Toluene)
3 products of SOA from benzene
SOA from "long" alkanes
anthropogenic organic oligomers
3 products of SOA from isoprene
2 products of SOA from monoterpenes
SOA from sesquiterpenes
biogenic organic oligomers
SOA produced in clouds
Primary PM2.5
soil-derived aerosol
coarse mode anthropogenic aerosol
aerosol water

Issues

- Heath warning
 - Preliminary data
 - Lots of analysis still to come
 - Jan Mar and therefore biased towards nitrate driven episodes
- Instruments
 - Incompatibility between size fractions (AMS PM₁, aethalometer PM_{2.5}, URG PM₁₀)
 - Complex
- Source attributions
 - Biomass / solid fuel estimates differ between aethalometer and AMS
 - Related to size fraction or data analysis methodology?
 - How much of nitrate is formed within London
 - Need equivalent rural measurement

Conclusions

- Highly time resolved measurements of chemical composition allow:
 - Quantification of the influence of different sources, both local and distant
 - Identification of new sources
 - Validation of the new modelling technique
 - Improvements to the emissions inventories
 - Provide evidence base for new abatement policy development
 - Quantify the impacts of policy once enacted
 - Provide evidence for further epidemiological studies

Acknowledgements

- Funders
 - Defra, NERC
- Colleagues at ERG
 - Gary Fuller, Anja Tremper, Max Priestman, Anna Font, Ana Beckett, Andrew Grieve, Ellie Norris
- National Physical Laboratory
 - Sonya Beccaceci, David Butterfield
- University of Manchester
 - James Allan, Nicky Young